Tinjauan Literatur tentang Hubungan Mutasi Genetik dengan Resistensi Obat pada Mycobacterium Tuberculosis
DOI:
https://doi.org/10.70608/j8dmhg15Keywords:
Genetik, TB, Mycobacterium Tuberculosis, OATAbstract
Tuberkulosis (TB) adalah salah satu penyakit menular yang paling mematikan di dunia, yang disebabkan oleh bakteri
Mycobacterium tuberkulosis. Menurut laporan terbaru dari Organisasi Kesehatan Dunia (WHO), sekitar 10 juta orang
menderita TBC setiap tahun, dan hampir 1,5 juta di antaranya meninggal akibat penyakit ini. Resistensi obat pada M.
tuberkulosis terjadi ketika bakteri mengembangkan mekanisme untuk bertahan terhadap obat-obatan yang dirancang untuk
membunuh mereka. Salah satu mekanisme utama yang menyebabkan resistensi ini adalah mutasi genetik pada genom M.
tuberkulosis. Penelitian ini menggunakan metode tinjauan literatur sistematis. Sumber data diperoleh dari berbagai basis data
ilmiah seperti PubMed, Google Scholar, dan ScienceDirect. Hasil penelitian menunjukkan bahwa dari 100 artikel yang
ditinjau, 25 artikel berhubungan langsung dengan mutasi genetik yang menyebabkan resistensi obat pada Mycobacterium
tuberculosis. Analisis dari 25 artikel ini mengidentifikasi sejumlah gen dan varian spesifik yang berperan dalam mekanisme
resistensi obat. Gen-gen tersebut berhubungan dengan resistensi terhadap obat-obatan seperti isoniazid, rifampicin,
Pirazinamid,streptomisin dan etambutol. Pentingnya memahami mekanisme pengobatan ini untuk mengembangkan strategi
pengobatan TBC yang lebih efektif dan mencegah resistensi obat yang semakin meluas, sekaligus memperkuat upaya global
dalam mengatasi dan mengobati TBC.
References
A. A. Rabaan et al., “Tools to alleviate the drug resistance in Mycobacterium tuberculosis,” Molecules, vol. 27, no. 20, p.
, 2022, doi: 10.3390/molecules27206985.
A. Mabhula and V. Singh, “Drug-resistance in Mycobacterium tuberculosis: where we stand,” Medchemcomm, vol. 10, no. 8,
pp. 1342–1360, 2019, doi: 10.1039/c9md00057g.
S. M. Gygli, S. Borrell, A. Trauner, and S. Gagneux, “Antimicrobial resistance in Mycobacterium tuberculosis:
mechanistic and evolutionary perspectives,” FEMS Microbiol. Rev., vol. 41, no. 3, pp. 354–373, 2017, doi:
1093/femsre/fux011.
L. L. Quezada et al., “Bactericidal disruption of magnesium metallostasis in mycobacterium tuberculosis is counteracted by
mutations in the metal ion transporter cora,” MBio, vol. 10, no. 4, 2019, doi: 10.1128/mBio.01405-19.
R. Ramazanzadeh and B. Mohammadi, “Mutations in embB gene associated with resistance to ethambutol in
Mycobacterium tuberculosis strains isolated from TB patients in the west of Iran (2014–15),” Int. J. Mycobacteriology, vol. 5,
no. Suppl 1, p. S140, 2016, doi: 10.1016/j.ijmyco.2016.11.013.
L. Zhao et al., “Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium
tuberculosis isolates from China,” Antimicrob. Agents Chemother., vol. 59, no. 4, pp. 2045–2050, 2015, doi:
1128/AAC.04933-14.
S. Hassanipour et al., “The incidence of hepatocellular carcinoma in Iran from 1996 to 2016: a systematic review and
meta-analysis,” J. Gastrointest. Cancer, vol. 50, no. 2, pp. 193–200, 2019, doi: 10.1007/s12029-019-00207-y.
M.-E. Grafakou, C. Barda, G. A. Karikas, and H. Skaltsa, “Hypericum essential oils—composition and bioactivities: an
update (2012–2022),” Molecules, vol. 27, no. 16, p. 5246, 2022, doi: 10.3390/molecules27165246.
L. Zhang et al., “Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2,” Protein Cell,
vol. 11, no. 7, pp. 505–517, 2020, doi: 10.1007/s13238-020-00726-6.
L. Zhang et al., “Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol,” Science (80-. ).,
vol. 368, no. 6496, pp. 1211–1219, 2020, doi:10.1126/science.aba9102.
A. Singh, P. Somvanshi, and A. Grover, “Drug repurposing against arabinosyl transferase (EmbC) of Mycobacterium
tuberculosis: Essential dynamics and free energy minima based binding mechanics analysis,” Gene, vol. 693, pp. 114–126,
, doi: 10.1016/j.gene.2019.01.029.
M. Wang et al., “Mycobacterial dynamin-like protein IniA mediates membrane fission,” Nat. Commun., vol. 10, no. 1, p.
, 2019, doi: 10.1038/s41467-019-11860-z.
M. Jayaraman, S. K. Rajendra, and K. Ramadas, “Structural insight into conformational dynamics of non-active site
mutations in KasA: A Mycobacterium tuberculosis target protein,” Gene, vol. 720, p. 144082, 2019, doi:
1016/j.gene.2019.144082.
M. Arjomandzadegan and S. Gravand, “Analysis of rpsL and rrs genes mutations related to streptomycin resistance in Mdr
and Xdr clinical isolates of Mycobacterium tuberculosis,” Tuberk Toraks, vol. 63, no. 4, pp. 235–242, 2015, doi:
5578/tt.6474.
J. Trylska and M. Kulik, “Interactions of aminoglycoside antibiotics with rRNA,” Biochem. Soc. Trans., vol. 44, no. 4,
pp. 987–993, 2016, doi: 10.1042/BST20160087.
D. Shrestha, B. Maharjan, N. A. Thida Oo, N. Isoda, C. Nakajima, and Y. Suzuki, “Molecular analysis of streptomycin-
resistance associating genes in Mycobacterium tuberculosis isolates from Nepal.,” Tuberculosis (Edinb)., vol. 125, p.
, Dec. 2020, doi: 10.1016/j.tube.2020.101985.
E. Jamshidi, S. Murolo, M. Salehi, and G. Romanazzi, “Sequence analysis of new Tuf molecular types of ‘Candidatus
Phytoplasma solani’in Iranian Vineyards,” Pathogens, vol. 9, no. 6, p. 508, 2020, doi: 10.3390/pathogens9060508.
Y. Yao, S. Enkhtsetseg, I. Odsbu, L. Fan, and M. Morigen, “Mutations of DnaA-boxes in the oriR region increase
replication frequency of the MiniR1–1 plasmid,” BMC Microbiol., vol. 18, pp. 1–9, 2018, doi: 10.1186/s12866-018-
-3.
D. Natalia, Y. M. Syah, D. S. Retnoningrum, and H. S. Kusuma, “Mutation of katG in a clinical isolate of
Mycobacterium tuberculosis: effects on catalase-peroxidase for isoniazid activation,” Ukr. Biochem. J., no. 88,№ 5, pp. 71–81,
, doi: 10.15407/ubj88.05.071.
R. L. Campen, D. F. Ackerley, G. M. Cook, and R. F. O’Toole, “Development of a Mycobacterium smegmatis
transposon mutant array for characterising the mechanism of action of tuberculosis drugs: Findings with isoniazid and its
structural analogues,” Tuberculosis, vol. 95, no. 4, pp. 432–439, 2015, doi: 10.1016/j.tube.2015.03.012.
L. M. Nieto R et al., “Virulence of Mycobacterium tuberculosis after acquisition of isoniazid resistance: individual
nature of katG mutants and the possible role of AhpC,” PLoS One, vol. 11, no. 11, p. e0166807, 2016, doi:
1371/journal.pone.0166807.
D. R. Durairaj and P. Shanmughavel, “In silico drug design of thiolactomycin derivatives against Mtb-KasA enzyme to inhibit
multidrug resistance of Mycobacterium tuberculosis,” Interdiscip. Sci. Comput. Life Sci., vol. 11, no. 2, pp. 215–225,
, doi: 10.1007/s12539-017-0257-0.
M. Hayashi et al., “Adduct formation of delamanid with NAD in mycobacteria,” Antimicrob. Agents Chemother., vol. 64, no.
, pp. 10–1128, 2020, doi: 10.1128/AAC.01755-19.
Q. Qi, G. M. Preston, and R. C. MacLean, “Linking system-wide impacts of RNA polymerase mutations to the fitness cost
of rifampin resistance in Pseudomonas aeruginosa,” MBio, vol. 5, no. 6, pp. 10–1128, 2014, doi: 10.1128/mBio.01562-14.
S. C. Vedithi et al., “Structural implications of mutations conferring rifampin resistance in mycobacterium leprae,” Sci.
Rep., vol. 8, no. 1, p. 5016, 2018, doi: : 10.1038/s41598-018-26451-z.
Y. P. Cita and D. H. Putri, “Analisis Mutasi pada Kodon 531 Pada Gen Rpob Mycobacterium tuberculosis Penyebab
Resistensi Rifampisin,” J. ILMU KEFARMASIAN Indones., vol. 15, no. 2, pp. 140–147, 2017, doi:
https://doi.org/10.35814/jifi.v15i2.504.
A. Weiss, B. D. Moore, M. H. J. Tremblay, D. Chaput, A. Kremer, and L. N. Shaw, “The ω subunit governs RNA
polymerase stability and transcriptional specificity in Staphylococcus aureus,” J. Bacteriol., vol. 199, no. 2, pp. 10–
, 2017, doi: 10.1128/jb.178.18.5447-5451.1996.
C. Zhang, W. Zhang, W. Liang, Y. Shao, X. Zhao, and C. Li, “A sigma factor RpoD negatively regulates temperature-
dependent metalloprotease expression in a pathogenic Vibrio splendidus,” Microb. Pathog., vol. 128, pp. 311–316, 2019, doi:
1016/j.micpath.2019.01.021.
M. Karmakar, C. H. M. Rodrigues, K. Horan, J. T. Denholm, and D. B. Ascher, “Structure guided prediction of Pyrazinamide
resistance mutations in pncA,” Sci. Rep., vol. 10, no. 1, p. 1875, 2020, doi: 10.1038/s41598-020-58635-x.
P. Gopal et al., “Pyrazinoic acid inhibits mycobacterial coenzyme A biosynthesis by binding to aspartate decarboxylase
PanD,” ACS Infect. Dis., vol. 3, no. 11, pp. 807–819, 2017, doi: 10.1021/acsinfecdis.7b00079.
J. Yang et al., “Structural basis for targeting the ribosomal protein S 1 of M ycobacterium tuberculosis by pyrazinamide,”
Mol. Microbiol., vol. 95, no. 5, pp. 791–803, 2015, doi: 10.1111/mmi.12892.
M. Yee, P. Gopal, and T. Dick, “Missense mutations in the unfoldase ClpC1 of the caseinolytic protease complex are
associated with pyrazinamide resistance in Mycobacterium tuberculosis,” Antimicrob. Agents Chemother., vol. 61, no. 2,
pp. 10–1128, 2017, doi: 10.1128/AAC.02342-16.
R. Grinter et al., “Cellular and structural basis of synthesis of the unique intermediate dehydro-F420-0 in mycobacteria,”
Msystems, vol. 5, no. 3, pp. 10–1128, 2020, doi: 10.1128/mSystems.00389-20.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Danang Prasetyaning Amukti, Ria Indah Pratami, Gugun Gumelar (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






